Abstract

This document specifies the format and mechanism that is to be used for encoding client link-layer address in DHCPv6 Relay-Forward messages by defining a new DHCPv6 Client Link-layer Address option.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 12, 2013.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents.
This specification defines an optional mechanism and the related
DHCPv6 option to allow first-hop DHCPv6 relay agents (relay agents
that are connected to the same link as the client) to provide the
client’s link-layer address in the DHCPv6 messages being sent towards
the server.

2. Problem Background and Scenario

DHCPv4 protocol specification [RFC2131] provides a way to specify the
client link-layer address in the DHCPv4 message header. DHCPv4
message header has ‘htype’ and ‘chaddr’ fields to specify client
link-layer address type and link-layer address respectively. The
client link-layer address thus learnt can be used by DHCPv4 server
and relay in different ways. In some of the deployments DHCPv4
servers use ‘chaddr’ as a customer identifier and a key for lookup in
the client lease database.

With the incremental deployment of IPv6 to existing IPv4 networks,
which results in a dual-stack network environment, there will be
devices that act as both DHCPv4 and DHCPv6 clients. In service
provider deployments, a typical DHCPv4 implementation will use the
client link-layer address as one of the keys to build DHCP client
lease database. In dual stack scenarios operators need to be able to
associate DHCPv4 and DHCPv6 messages with the same client interface,
based on an identifier that is common to the interface. The client link-layer address is such an identifier.

Currently, the DHCPv6 protocol specification [RFC3315] does not define a way to communicate the client link-layer address to the DHCP server in cases where the DHCP server is not connected to the same network link as the DHCP client. DHCPv6 protocol specification mandates all clients to prepare and send DUID as the client identifier option in all DHCPv6 message exchange. However, none of these methods provide a simple way to extract client’s link-layer address. This presents a problem to an operator who is using an existing DHCPv4 system with the client link-layer address as the customer identifier, and desires to correlate DHCPv4 assignments using the same identifier. [RFC4361] describes a mechanism for using the same DUID in both DHCPv4 and DHCPv6. Unfortunately, this specification requires modification of existing DHCPv4 clients, and has not seen broad adoption in the industry (indeed, we are not aware of any commercial implementations).

Providing an option in DHCPv6 Relay-Forward messages to carry client link-layer address explicitly will help above mentioned scenarios. For example, it can be used along with other identifiers to associate DHCPv4 and DHCPv6 messages from a dual stack client. Further, having client link-layer address in DHCPv6 will help in proving additional information in event debugging and logging related to the client at relay and server. The proposed option may be used in wide range of networks, two notable deployment models are service provider and enterprise network environments.

3. DHCPv6 Client Link-layer Address Option

 The format of the DHCPv6 Client Link-layer Address option is shown below.
DHCPv6 Relay Agent Behavior

DHCPv6 Relay agents which receive messages originating from clients (for example Solicit and Request, but not, for example, Relay-Forward or Advertise) MAY include the link-layer source address of the received DHCPv6 message in Client Link-layer Address option in relayed DHCPv6 Relay-Forward messages. The DHCPv6 Relay agent behavior can depend on configuration that decides whether the Client Link-layer Address option needs to be included.

DHCPv6 Server Behavior

If DHCPv6 Server is configured to store or use client link-layer address, it SHOULD look for the client link-layer address option in the Relay-Forward DHCP message of the DHCPv6 Relay agent closest to the client. The mechanism described in this document is not necessary in the case where the DHCPv6 Server is connected to the same network link as the client, because the server can obtain the link-layer address from the link-layer header of the DHCPv6 message. If the DHCP server receives a Client Link-layer Address option anywhere in any encapsulated message that is not a Relay-Forward DHCP message, the server MUST silently ignore that option.

There is no requirement that a server return this option and its data in a downstream DHCP message.
6. DHCPv6 Client Behavior

Client Link-layer Address option is only exchanged between the relay agents and the servers. DHCPv6 clients are not aware of the usage of Client Link-layer Address option. DHCPv6 client MUST NOT send Client Link-layer Address option, and MUST ignore Client Link-layer Address option if received.

7. IANA Considerations

IANA is requested to assign an option code to OPTION_CLIENT_LINKLAYER_ADDR from the "DHCP Option Codes" registry (http://www.iana.org/assignments/dhcpv6-parameters/dhcpv6-parameters.xml).

8. Security Considerations

It is possible for a rogue DHCPv6 relay agent to insert an incorrect Client Link Layer Address option for malicious purposes. A DHCPv6 client can also pose as a rogue DHCP relay agent, sending a Relay-Forward message containing an incorrect Client Link Layer Address option. In either case, it would be possible for a DHCPv6 client to masquerade as the same device as a DHCPv4 client, when in fact the two are distinct.

One possible attack that could be accomplished using this masquerade would be in the case where a DHCPv4 client is using DHCPv4 to do a Dynamic DNS update to install an A record so that it can be reached by other nodes [RFC4702]. A masquerading DHCPv6 client could use DHCPv6 to install an AAAA record with the same name [RFC4704]. Dual-stack nodes attempting to connect to the DHCPv4 client might then be tricked into connecting to the masquerading DHCPv6 client instead.

It is possible that there are other attacks that could be accomplished using this masquerading technique, although the authors are not aware of any. To prevent masquerades of this sort, DHCP server administrators are strongly advised to configure DHCP servers that use this option to communicate with their relay agents using IPsec as described in Section 21.1 of [RFC3315].

In some networks, it may be the case that the operator of the physical network and the provider of connectivity over that network are administratively separate, such that the client link-layer address option would reveal information to one or the other party that they do not need and could not otherwise obtain. It is also possible in some cases that a relay agent might communicate with a DHCP server over an open network where eavesdropping would be possible. In these cases, it is strongly recommended, in order to
To protect end-user privacy, that network operators use IPsec to provide confidentiality for messages between the relay agent and DHCP server.

9. Acknowledgements

10. References

10.1. Normative References

10.2. Informative References

Authors’ Addresses

Gaurav Halwasia
Cisco Systems
Cessna Business Park, Sarjapura Marathalli Outer Ring Road
Bangalore, KARNATAKA 560 087
India
Phone: +91 80 4429 2703
Email: ghalwasi@cisco.com

Shwetha Bhandari
Cisco Systems
Cessna Business Park, Sarjapura Marathalli Outer Ring Road
Bangalore, KARNATAKA 560 087
India
Phone: +91 80 4429 2627
Email: shwethab@cisco.com

Wojciech Dec
Cisco Systems
Haarlerbergweg 13-19
1101 CH Amsterdam, Amsterdam 560 087
The Netherlands
Email: wdec@cisco.com